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Specifically this paper develops a method for on-line control which can 
be computed rapidly due to the identification of a linear model for the plant, 
and which introduces feedback by sequentially monitoring the system at dis- 
crete time instants and updating the control. The model chosen is a linear 
time-varying system which is assumed stationary over subintervals of time, 
thus allowing a controller to generate a sequential control law which minimizes, 

control is of course only an approximation to the optimum control. However, 
due to process and environmental variations which cannot be foreseen, it may 

not the given performance index, but a closely related one. The resulting 
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\' A suboptimal feedback soluti-on to the problem of guidance and control of 
:\ a vehicle during flight is presented. Optimum open loop solutions for the 
v minimum time and minimum fuel problem for low thrust orbital transfer have 

been previously obtained. As a further step in the implementation of the re- 
sulting trajectories, it is desired to obtain closed loop suboptimal controllers 
which generate these trajectories. To this end, the nonlinear equations of 
motion for orbital transfer are modeled by a linear time varying system of 
assumed form. This system is assumed stationary over subintervals o f  time 
which allows an on-board computer to generate a sequential control law which 
minimizes an integral of a quadratic form of error and control effort in such 
a fashion as to produce system trajectories which do not differ significantly 
from the optimal trajectories. Computation time and storage requirements are 
such as to suggest feasibility of the proposed method for on-line operation. 
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s u b s t a n t i a l l y  reduce the cost over t h a t  which r e s u l t s  from a predetermined open- 
loop con t ro l .  

D E R I V A T I O N  OF CONTROL L A W  

' In the problem t o  be examined, i t  i s  desired t o  force the system t o  f o l l o w  
a precomputed "optimum" s o l u t i o n  even though the system may encounter c e r t a i n  
environmental changes o r  noise which were not accounted fo r  i n  the precomputed 
so lu t i on .  I n  general, add i t i ona l  cost i s  required f o r  doing t h i s  as wel l  as 
large computer storage requirements. Several schemes have prev ious ly  been , 

developed f o r  accomplishing t h i s .  C4,SI Here the emphasis i s  placed on the  
s i m p l i c i t y  o f  the con t ro l ,  the ease, and speed w i t h  which i t  may be computed, 
and.possible minimizat ion o f  storage requirements. 

Assume a given system o f  the form ( 1 )  w i t h  cost  f unc t i on  (2).  

t J 

0 
N 

and x represents the desired f i n a l  s t a t e  o f  the system -d Here, 5 = & - $ 9  a t  t ime t . 
The optimum s o l u t i o n  i s  found using any one o f  several methods. Then 

t h e  s t a t e  vector f o r  t = t , t ] . . . ,  
designated x (ti). If th8 t ime increments At .  = t.+ 
mAt = t f  -?, = dt . .  For the  suboptimal cont ro l  4cAeme the  system i s  i d e n t i -  

t f  i s  s tored for  f u t u r e  use and - t. are equal , tm- l  9 

I f i e 8  as 

- x = A (ti) x + B ( t i )  (3)  

where A and B are constant matrices over the i n t e r v a l  t e  (t., ti+l ) .  
sub' interval ,  a cost  f unc t i on  o f  the form 

For each 
I 

i s  chosen. The 
s o l u t i o n  should 

elements df P determine how c lose ly  the predetermined "optimum" 
be followed. The t o t a l  cost i s  given by 

- L U P  El V ?  

A t  each t = t i  the two po in t  boundary-value problem must be solved, a t  l eas t  
for  the i n i t i a l  values of the contro l .  I f  the subinterval  length i s  s u f f i c i e n t l y  , 

smal l ,  the con t ro l  can be held constant over the e n t i r e  subinterval  w i t h  on l y  



very s l i g h t  d i f f e rence  from the resu l t s  w i t h  a va r iab le  con t ro l .  

By u t i 1  i z i n g  the maximum p r i n c i p l e  o f  Pontryagin [61, the suboptimal con t ro l  
can be found. The Hamiltonian, H, i s  w r i t t e n  as, 

For no ta t i ona l  s i m p l i c i t y  i t . i s  desirable t o  w r i t e  A (t.) and B (t.) as A and 
B s ince they are constant matrices over each subinterval .  
the’maximum p r i n c i p l e  the canonic equations are 

By appl f ca t i on  o f  

- 1  T 
k - - R  B & 

- % = A z + B k  

T - h = - A  h .  
- x (ti) = q 

The t r a n s v e r s a l i t y  condi t ions a t  t - ti+l g ives 

I t  i s  des i rab le t o  convert (7) through (10) i n t o  equations f o r  which the 
con t ro l  can be computed d i r e c t l y .  With t h i s  i n  mind, i t  i s  convenient t o  
de f i ne  an n - r  dimension vector g a s  being 

- a =  [[I 
By ad jo in ing  t h i s  g vector t o  the vector there r e s u l t s  I;-]=[- ,-------- 

I 
I -R-lBT1 0 :  x 

where I i s  an ( r  x r) i d e n t i t y  matr ix.  Let 

- j 
Thus, 

M =  

kl 



I 

Equations (8) and ( 9 )  become 

- X = A E + C ~  

and C i s  an n x n ma t r i x  def ined by 

T h e ' i n i t i a l  condi t ions on 
- r a r e  given by 

a re  given by (ll), and the endpoint cond i t ions  on 

where 1 i s  an (r x r) i d e n t i f y  matrix. 

The s o l u t i o n  of (18), (19),  (21)  and (10) i s  given by 

where - P (ti) i s  yet  t o  be found. To do t h i s ,  de f ine  

I , A t  t = t , i s  known i n  terms of 5. U t i l i z l n g  t h i s  lnformatlon, C(t,) i s  

1 - P O  x r  (t l+l-t l) 9 4 r p  (t i+l-t i) 

'u = Qrx (ti+1-tl) - p 4xx (tl+l-tl) 

found toi$&# 

[ (ti) <' ['u E (ti+,) + 'd (ti+,)1 ( 24) 

(25) 

(26) 

Since the f i r s t  r components o f  !comprise the cont ro l  vector ,  t he  con t ro l  can 
be app l ied  a f t e r  computing (24). 

This method o f  con t ro l  i s  then combined w i t h  a s u i t a b l e  scheme f o r  i d e n t i -  
f i c a t i o n  t o  implement the on-1 ine c o n t r o l l e r .  
i n v a r i a n t  imbedding techniques [8 ,9]  have been found e f fec t i ve  f o r  on-1 ine 
i dent i f i ca t  ion [ l o ] .  

Quasi1 i nea r i za t l on  [71 and 



LOW THRUST ORBITAL TRANSFER 

As an example o f  t h i s  type o f  con t ro l ,  consider the problem o f  minimizing 
the fue l  consumption o f  a low th rus t  rocket which i s  t o  t rans fe r  from the  I 

o r b i t  t o  Earth t o  the o r b i t  o f  Mars i n  f i xed  time. The o r b i t s  o f  Mars and 
Earth are assumed t o  be c i r c u l a r  and coplaner, and the  g r a v i t a t i o n a l  a t t r a c t i o n s  
o f  the two p lanets  a re  neglected. The problem has been prev ious ly  formulated 
and so ved f o r  the open-loop contro l  assuming an i nequa l i t y  cons t ra in t  on 
propel ant  mass f low, B, o r  th rus t .  E 1 1 1  The normal ized dynamics and boundary 
cond i t  ons are given by . 

(Radial  ve loc i t y )  r = w  

w = - -  v K (Rad i a 1 accc.1 e r a t  ion) 
v 2 

r ? + m  

v = - -  wv + Q cos e ( C i rcumf eren t i a 1 acce 1 e ra  t ion) 
r m 

m = -  B 

r (0 )  = 1.0 r ( t f )  = 1.52 

w(0) = 0.0 
~ ( 0 )  = 1.0 

m ( 0 )  = 1.0 

W ( t f )  = 0.00 

v ( t f )  = 0.81 

m ( t f )  - open 

(Mass flow) 

w i t h  K =,1.00 

C = 1.872 

15 = 0.075 max 

Bmi n = 0.0 

where the f i n a l  t ime, t f ,  i s  3.816 u n i t s  which corresponds to  222.0 days and 8 
i s  the t h r u s t  angle measured from the loca l  hor izon ta l .  I t i s  desired t o  
minimize the fue l  consumed o r  equ iva len t ly  the  cost func t ion  

P = - m ( t f )  

Computational r e s u l t s  show tha t  the open-loop con t ro l  i s  a bang-off-bang 
type. However, i n  ac tua l  p rac t ice ,  due t o  measurement e r ro rs ,  noise, etc., i t  
may not be des i rab le  t o  apply t h i s  as a p reca lcu la ted  open-loop con t ro l ,  especi- 
a l l y  since near impact the  system may requ i re  more than the open-loop B t o  
match the c r i t i c a l  endpoints. 
s ince i t  monitors the system and tends t o  keep i t  t rack ing  the preca lcu la ted  
t r a j e c t o r y ,  although poss ib ly  a t  more cost.  

For t h i s  reason, t r a j e c t o r y  cont ro l  seemFa?easible 

The non- l inear  dynamics given above are  modeled as a l i n e a r  non-stat ionary 
system of the form 



rc: 
u1 

u2 = 

w i t h  

The t o t a l  t ime 
where i = 0, 1 
desired t o  min 

1 
J =  [ 2 p 1  

13 s i n  8 

B cos e. 

f o r  the f l i g h t  (222 days) i s  d iv ided i n t o  3 7  subinterva ls  t e ( t i ,  ti+l) 
--- , 36. Thus each subinterva l  corresponds t o  6 days. It i s  
mize the  cost func t ion  

over each o f  these sub 
p,l  = 1000.0 

p22 = 1000.0 

and a =  1.0. 

nterva ls  where 

The values f o r  w and vd a t  each ti+l are  taken from the optimal open-loop t ra jec to ry .  
d 

The Hamiltonian i s  given by (6) as 

and equations (g) ,  ( 1 3 ) ,  ( I s ) ,  and (19) y i e l d  fo r  the canonic equations: 
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